Triacs sensitive gate

Product specification

GENERAL DESCRIPTION

Glass passivated, sensitive gate triacs in a plastic envelope, intended for use in general purpose bidirectional switching and phase control applications, where high sensitivity is required in all four quadrants.

PINNING - TO220AB

PIN DESCRIPTION	
1	main terminal 1
2	main terminal 2
3	gate
tab	main terminal 2

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.		MAX.		UNIT
V _{DRM}	Repetitive peak off-state voltages		-	-500 500 ¹	-600 600 ¹	-800 800	V
I _{T(RMS)} I _{TSM}	RMS on-state current Non-repetitive peak on-state current	full sine wave; T _{mb} ≤ 107 °C full sine wave; T _j = 25 °C prior to surge	-		4		А
		t = 20 ms t = 16.7 ms	-		25 27		A
l²t dl _⊤ /dt	I ² t for fusing Repetitive rate of rise of on-state current after	t = 10 ms t = 10 ms $I_{TM} = 6 \text{ A}; I_G = 0.2 \text{ A};$ $dI_G/dt = 0.2 \text{ A}/\mu \text{s}$	-		3.1		A A²s
	triggering	T2+ G+ T2+ G- T2- G- T2- G+			50 50 50 10		A/µs A/µs A/µs A/µs
I _{GM} V _{GM} P _{GM}	Peak gate current Peak gate voltage Peak gate power		- -		2 5 5		A V W
$\begin{array}{c} P_{G(AV)}^{OIII} \\ T_{stg} \\ T_{j} \end{array}$	Average gate power Storage temperature Operating junction temperature	over any 20 ms period	- -40 -		0.5 150 125		°℃ ℃

QUICK REFERENCE DATA

voltages

current

PIN CONFIGURATION

tab

PARAMETER

Repetitive peak off-state

Non-repetitive peak on-state

RMS on-state current

SYMBOL

 V_{DRM}

T(RMS)

ITSM

1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 A/ μ s.

BT136 series E

MAX.

800E

800

4

25

UNIT

V

А

А

SYMBOL

BT136-

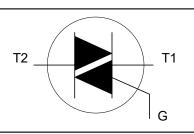
MAX.

500E

500

4

25


MAX.

600E

600

4

25

Triacs sensitive gate

BT136 series E

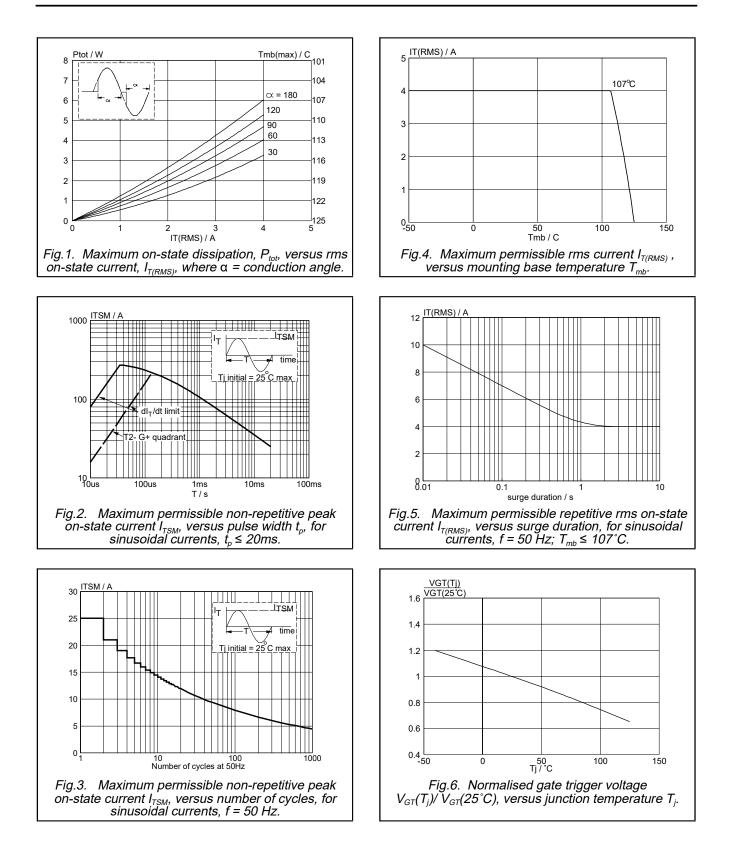
THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb} R _{th j-a}	Thermal resistance junction to mounting base Thermal resistance junction to ambient	full cycle half cycle in free air		- - 60	3.0 3.7 -	K/W K/W K/W

STATIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

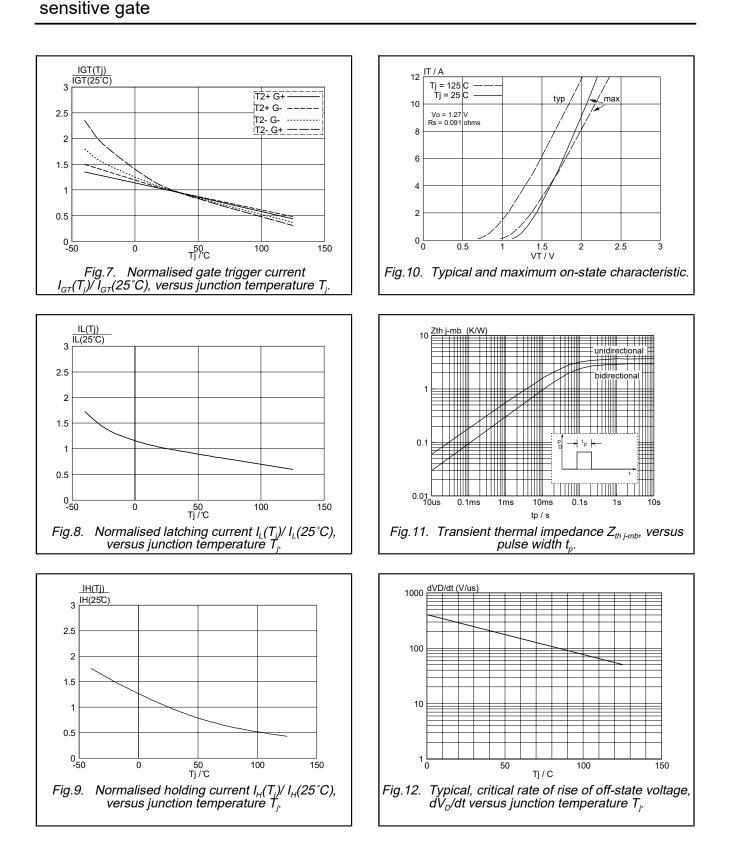
SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
I _{GT}	Gate trigger current	$V_{\rm D} = 12 \text{ V}; \text{ I}_{\rm T} = 0.1 \text{ A}$					
		Т Т	-2+G+	-	2.5	10	mA
			⁻ 2+ G-	-	4.0	10	mA
		-	⁻ 2- G-	-	5.0	10	mA
			⁻ 2- G+	-	11	25	mA
I IL	Latching current	$V_{\rm D} = 12 \text{ V}; \text{ I}_{\rm GT} = 0.1 \text{ A}$					
	-	Τ	-2+G+	-	3.0	15	mA
		-	⁻ 2+ G-	-	10	20	mA
			⁻ 2- G-	-	2.5	15	mA
		-	-2-G+	-	4.0	20	mA
I I _H	Holding current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$		-	2.2	15	mA
V _T	On-state voltage	$I_T = 5 A$		-	1.4	1.70	V
I _H V _T V _{GT}	Gate trigger voltage	$ V_{D} = 12 V; I_{T} = 0.1 A$		-	0.7	1.5	V
		$V_{D} = 400 \text{ V}; I_{T} = 0.1 \text{ A}; T_{i} = 125 ^{\circ}\text{C}$	C	0.25	0.4	-	V
I _D	Off-state leakage current	$V_{\rm D}^{\rm D} = V_{\rm DRM(max)}$; T _j = 125 °C		-	0.1	0.5	mA


DYNAMIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
dV _D /dt	Critical rate of rise of off-state voltage	$V_{DM} = 67\% V_{DRM(max)}; T_j = 125 °C;$ exponential waveform; gate open circuit	-	50	-	V/µs
t _{gt}	Gate controlled turn-on time	$I_{TM} = 6 \text{ A}; V_D = V_{DRM(max)}; I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A}/\mu \text{s}$	-	2	-	μs

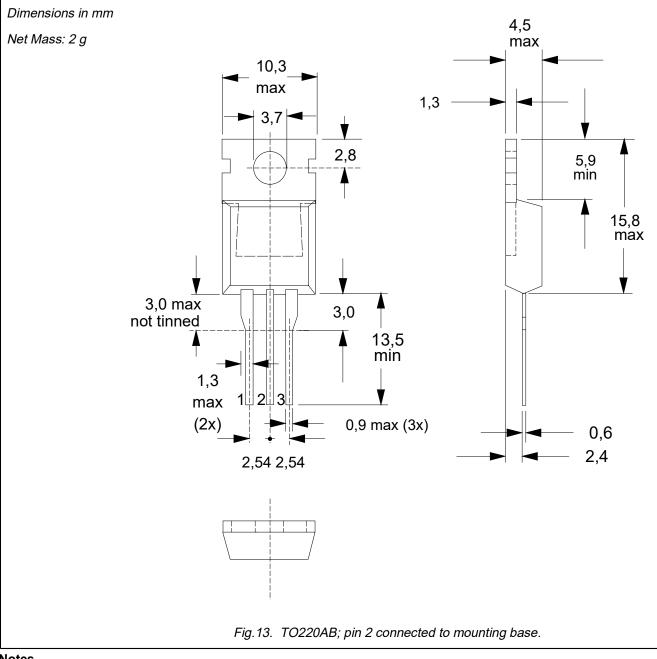
Triacs sensitive gate


BT136 series E

March 1997

Triacs

BT136 series E



March 1997

Triacs sensitive gate

BT136 series E

MECHANICAL DATA

Notes 1. Refer to mounting instructions for TO220 envelopes. 2. Epoxy meets UL94 V0 at 1/8".

Triacs sensitive gate

Product specification

BT136 series E

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later				
Product specification	specification This data sheet contains final product specifications.			
Limiting values				
or more of the limiting val operation of the device at	in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one ues may cause permanent damage to the device. These are stress ratings only and these or at any other conditions above those given in the Characteristics sections of applied. Exposure to limiting values for extended periods may affect device reliability.			
Where application information is given, it is advisory and does not form part of the specification.				
© Philips Electronics N	V. 1997			
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.				
The information presente	d in this document does not form part of any quotation or contract, it is believed to be			

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.